张琼
开通时间:..
最后更新时间:..
蒙特卡罗方法
蒙特卡罗方法是研究粒子运动规律的重要统计学方法。而在复杂环境(如:井下辐射源-探测器的地层测量)中,常规蒙特卡罗的计算消耗大量时间与资源,无法提供高效评估与准确计算,这需要对现有方法进行改进。我的研究方向针对基于玻尔兹曼粒子输运理论的蒙特卡罗方法的计算与优化展开一系列研究,包括:混合蒙特卡罗确定论 (Hybrid Monte Carlo-DT);并行超算(Parallel computing);降阶模型(Reduced-order model);机器学习优化改进蒙特卡罗 (Machine learning Monte Carlo);大数据处理平台设计开发 (HPC platform for real-time data processing)。
探测仪器研究
针对页岩气等非常规能源与海洋油气能源开发的重大需求,对中子孔隙度、伽马密度等仪器进行探测方法改进研究与实井测试应用。展开对新一代前沿清洁无源仪器的研究。
基于人工智能的数字地球科学解释与算法研发
使用基于不同特征关联的机器学习进行地球信息的数据处理、预测与数字岩心构造。针对岩石物理进行深度学习算法开发,高度改善人工解释的不足。实现新一代信息技术与地球科学的深度交叉融合与应用。